
NASA-CR-193467

HSCT Mission Analysis of V, raverider Designs

i,., ,/.
_NASA Langley Award NAG-l-1295, Acct. 153-6442

Final Report /-//-/ 7:' / /'

(May 15, 1991 - May 14, 1993) /o
d

f

In May of 1991, grant NAG-l-1295 was awarded to Dean A. Richard Seebass and

Dr. F. Carroll Doughert7 of the University of Colorado by the Mission Analysis Branch

at NASA Langley under branch chief Bill Small for the period May 15, 1991, to May 14,

1992. A one year extension was later obtained, making the completion da:e _[ay 14, 1993.

The grant provided partial support for an investigation of waverider design and anal-

ysis with application to High-Speed Civil Transport (HSCT) vehicles. Proposed was the

development of the necessary CFD tools for the direct simulation of the waverider vehicles,

the developmen: of two new waverider design methods that would provide computational

speeds and design flexibilkies never before achieved in waverider design studies, and fi-

nally the selection of a candidate waverider-based vehicle and the evaluation of the chosen

vehicle for a canonical HSCT mission scenario.

This, the final report, reiterates the proposed project objectives in moderate detail,

and it outlines the state of completion of each portion of the study, providing references

to current and forthcoming publications that resulted from this work.

Pro.iect Objectives

Objectives i= three areas were originally proposed: the completion of a package of

CFD tools for :he direc: simulation of waverider-type configurations, the development

of two new inverse methods for the design of waveriders, and the mission analysis of a

waverider-based HSCT candidate vehicle. The proposed work in each of these catagories,

including the sta_e of development at the initiation of the study as well as the desired state

at the completion of the study, is briefly summarized in the following subsections.

Direct Simulations

At the onset of this project, a reasonably complete package of tools had been compiled

for the direct simulation of inviscid and viscous flows about waverider-like configurations.

These tools were developed by the current investigators along with Dr. He!rout Sobieczky
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of the DLR in GSttingen, Germany, and two graduate research assistants, Kevin D. Jones

and Kenneth B. Center and included a robust geometry generation tool, I several analytic

and spkine-fitting surface-mapping routines, a newly developed Trans-Finite Interpolation

(TFI) grid generator, a version of the NASA Ames partially flux-split flow solver, F3D,

with specialized boundary condition subroutines for handling stagnation-free sharp leading

edges, and a newly de:'eioped spline-fitting, solution-based grid adaptation scheme.

Pre5minary work .-vith these routines demonstrated their ability to accurately simu-

late high-speed flowfieids about waverider configurations through comparisons with theory

or known solutions_ through comparisons with other numerical results that were widely ac-

cepted in the research community, and through comparisons with experimental data. ='3'4's'6

These tools were :c be further developed into a more robust package in order to vali-

date results from the new inverse design codes. These new waverider-based configurations

were to have sharp and or rounded leading edges and highly convex and/or concave surface

features, but all would ).ave known shock locations. Suitable grid generation and accurate

flow solving capabiiitie._ were desired, requiring further modification and debugging of the

existing software.

Inverse VCaverider Design

Two new inverse iesign algorithms were in the early stages of development at the

start of this project. The two methods, originally proposed by Sobieczky et M. 4's, were

the osculating cones method and the cross-stream marching method.

The first approach, the osculating cones method, was being developed by Kenneth

B. Center into an efi:iclent and powerful interactive design tool, WIPAK (Waverider Inter-

active Parameter Adju._:ment Routine). 7 At the initiation of the current study, WIPAR.

provided fuliy interac=:_':e adjustment of shock geometry, flow capture tube, and flow pa-

rameters that defined t:e conical fiowfields. The proposal called for WIPAI_ to be extended

to include tow-speed aerodynamic analysis and weight and balance computations. Addi-

tionally, viscous analy._:.s and on-design force and moment integrations were desired for

accurate optimization of the configurations.

The second approach, the cross-stream marching method, was proposed by Kevin D.

Jones for computing the fiowfields behind more general shock geometries in the interest

of generating a new class of variable shock-strength waveriders. A prototype code devel-

oped by Sobieczky eta:. 4's demonstrated the utility of the approach, albeit with a much

simplified vertical marching procedure. The proposal called for developing a robust algo-





rithm, SCIEMAP (Supersonic Cross-stream Inverse Euler Marching Program), that would

march in a direction that would eliminate or, at least, minimize the effec:s of the three-

dimensional problem:s iil-posedness. If necessary, filtering and smoothing techniques were

to be investigated to suppress instabilities that might arise due to the it!-posedness of the

problem.

Mission Analysis

The last objective of the proposal called for the selection of a candidate waverider

topology and ".he analysis of the chosen configuration for a canonical HSCT mission sce-

nario. No work had been initiated by the involved researchers in the field of waverider-

based HSCT mission anMysis, but four computer codes, AWAVE, AEKO2S, AWDES, and

FLOPS, were so be provided by the Mission Analysis Branch at NASA Langley for the

computation of subsonic and supersonic aerodynamic performance, and optimum mission

design.

Project Status

In this section the status of each of the three proposed tasks at the completion of

the study is discussed in some detail with references to resulting publications. Subsections

here are consistent with :he subsections above, and summarize the progress made during

the period of the grant.

Direct Simulations

It is reasonable to state that the package of CFD tools for the direct simulation

of waverider vehicles is complete within the bounds outlined in the proposal. Several

modifications were made in the grid generator, HYGRID, and the flow solver, F3D, to

better enable them to co_e with the waverider configurations.

The grid generator was modified to accept more flexible leading edge geometries while

minimizing grid irregulari:ies.These changes were put to use on severaltestconfigurations

including a NASP-Iike, waverider forebody with a rounded leading edge and a canopy

produced by Sobieczky a.ndStroeve.I

After a presentation e.t the AIAA 22nd Fluid Dynamics, Plasma Dynamics _ Lasers

Conference, 6 an inconsis=enc.v between the pressure integration procedure employed by

F3D and the accepted practices of other numerical anMists and experimentalists was dis-

covered. This inconsistency led to an apparent error in computed drag for flow simulations





about truncated bodieswith finite baseareas. Modifications weremade to conform to the

acceptedapproach(i.e., freestreampressureacting on the vehicle's base), and results from

this were published by Jones and Dougherty. s

Inverse VCaverider Design

The most significant achievments were made in this area. Two very powerful algo-

rithms have been developed providing design flexibility and computational speeds never

before available in waverider design. With computational codes such as WIPAR and

SCIEMAP, there is always room for additional features, but it is fair to say that both

programs are now complete. Some of the proposed features proved to be unnecessary or

unobtainable; whereas: other features not in the original proposal became apparent and

were incorporated into the algorithms.

Complete deta'is of the numerical algorithms and demonstrations of the application

and accurac)" of WIPAR and SCIEMAP can be found in the dissertations of Kenneth B.

Center and Kevin D. Jones, repectively. 9'1° Additionally, initial work on both methods was

presented at the IStA Congress of ICAS in Beijing, Peoples l_epublic of China, by Center

et al., 1_ preliminary results from SCIEMAP were presented at the 31st AIAA Aerospace

Sciences Meeting in R.eno by Jones et al., _2 and journal publications are in progress for

both algorithms. 1S':_'1"_':6 The final state of the algorithms is briefly summarized in the

following subsections.

WIPAR This program allows the user to interactively vary the parameters that define

the shape and strength of the shock wave and the shape of the waverider;s leading edge,

while instantaniousl:.- viewing the three-dimensional topology of the resultant waverider

and monitoring the :he new vehicle's aerodynamic performance. This instantanious manip-

ulation of parameters with real-time graphic portrayal of results is made possible through

the use of modern workstations and efficient programing.

WIPAI_ employs the osculating cones technique of Sobieczky et al., 4'5 whereby a

nonconical flowfield behind a shock of constant strength is approximated by man)" small

regions of locally conical flow that are governed by the Taylor-Maccoll equation. The

method is exact for axisymmetric, conical shocks, and still the results have been shown to

be quite good for shocks that are extremely nonconical. The design flexibility provided by

the method allows for the rapid generation of an endless variety of waverider configurations,

as illustrated in Fig. 1.





A user guided optimization procedure is coupled with the algorithm, allowing the

user to quickly scan a selected parameter space for local optima based on a selected per-

formance criteria or a combination of these criteria. The real-time interaction allows the

user to manually constrain the optimization to realistic geometries, as often unconstrained

optimization processes lead to useless results.

The computation of low-speed aerodynamic performance originally proposed requires

the use of a separate aigorithm from that which is used to design the waveriders. This

feature was deemed unnecessary: as existing codes were available from NASA to perform

these computations. Also, an in-depth weight and balance analysis requires substantial

knowledge of the aircraft componentry which is often not available. However, the center

of volume may be easii/ computed and it may be used as a low-order approximation of

the center of mass of the vehicle during the preliminary design stages.

SCIEMAP This program allows the user to specify a piece of a three-dimensional shock

surface, and then the code computes the flowfield behind the shock by marching the Euler

equations away from the shock surface in an essentially cross-stream direction. The gen-

eral three-dimensional cross-stream marching problem is mathematically ill-posed; that is,

unique, bounded solutions may not exist. However, by marching within the local osculat-

ing plane, the three-di=.ensional problem is reduced to a series of two-dimensional ones

which are more stable.

Once the flowfield is computed, a waverider lower surface is generated in the usual

way, by integrating a s:reamsurface (used as the waverider's lower surface) downstream

from a user-defined leading edge. An upper surface is defined, and the flowfield there is

predicted by an approxmation to the axisymmetric method of characteristics. 9

SCIEMAP can be used to duplicate many results from past waverider studies, but it

is capable of producing a class of waveriders never before possible, with nonaxisymmetric

shock surfaces and nonconstant, shock strength. Interestingly, while the application to

waverider design provides apowerful new tool for researchers in the field, the cross-stream
%

marching approach employed by SCIEMAP may have many other applications such as

intake design and internal flows.

Mission Analysis

In order to design and optimize a mission for a waverider-based HSCT, a number of

preliminary tasks must be performed. The first task is the selection of a candidate vehicle.

Manual optimization using the WIPAR code yielded the aircraft shown in Fig. 2, with





an on-design cruise-speedof Much 4 and an LID of about 7.4 (Note, this value of L/D

neglects the affects of the vertical fins, engines, and other features added to the waverider

base vehicle). Details of the selection process may be found in Ref. 9.

A computer code, FLOPS, was provided by NASA for the design and optimization of

an HSCT mission. In order to use the code, performance data over a wide flight envelope

had to be provided, including, zero-lift wave drag, lift and both pressure and viscous drag

coefficients, for a broad range of Much numbers and angles of attack.

Using the NASA developed AEI%02S code for subsonic analysis and the AWDES code

for supersonic analysis, off-design performance across the full anticipated flight envelope

was computed. The computed lift coefficient, pressure drag coefficient, and lift-to-drag

values have been extracted and compiled in graphical format, so that the waverider's

performance can be contrasted with that of the traditional HSCT configuration detailed

in NASA Technical Memorandum 4223.1_ Results from this (given in P_ef. 9) compare well

with those given in l%ef. 17, demonstrating the competitiveness of the waverider-based

configuration.

Technical dif6.culties arose applying the zero-lift wave drag code, AWAVE, on the

waverider-based vehicle and could not be resolved in time to be useful in this study. Ad-

ditionally, an accurate method for predicting the viscous drag coefficient was not available

except at the on-design cruise conditions. These two difficulties prevented the utilization

of the FLOPS mission design code.

Conclusions

Comparison of the results obtained in this study with those published for the Much

4 HSCT of NASA Langley seem to indicate, at leasz upon initial inspection, that the

candidate waverider conf.guration is competitive. Of course this configuration does not

include control surfaces, engines, and other necessary features which add significant drag

penalties, but it is also t;ue that the results presented here are for a partially optimized

waverider; this is cer:ainty not the best that can be achieved. At the present time, however,

it was felt that it was more important to ensure that the codes used in the off-design

analysis were producing reasonable results. Now that their accuracy is confirmed, a study

may commence to design and investigate better candidates for the prescribed mission.
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Figure la: An osculating cones waverider designed for a LIach 4 high-speed

civil_rznspor_ mission compared to an existing competitor.

Figure ib: An osculatingcones wzverider designed at a de_._.z_-.>Iach number

of 25 resembling :he space shuttle orbiter.

Figure lc: A Mach 5 viscous-optimized osculating coze_. .-:averider whlch
curioust 7 resembles :he Lockheed $IR.-71.
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Figure 2: W_verider-b_sed M_ch 4 HSCT c_ndid_e.
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